

APLICATION OF CONTINUOUS TRAINING TO INCREASE VO2MAX IN BADMINTON ATHLETE

DEFANY IFADH (1808031)

SPORT COACHING EDUCATION INDONESIA UNIVERSITY OF EDUCATION

INTRODUCTION

- **Vo2Max is a key indicator of aerobic capacity and cardiovascular fitness** •
- **Badminton players need a high Vo2Max to perform better in fast and long matches**
- Low Vo2Max levels can cause injuries because the body is less capable of handling intense training loads.

lacksquare

LITERATURE REVIEW

- Harsono (2016) suggests that performing continuous training at 70% intensity for 3 sessions per week over several weeks will lead to noticeable improvements in endurance.
- Nesra Barus (2020) states that the continuous training method has a significant impact on improving VO2Max
 - Subarjah (2016) notes that badminton players need extra oxygen because the sport mainly involves anaerobic activity, which requires speed and dynamic movements. As a result, a high **VO2Max** is essential to meet these demands.
 - Putri (2014) The data shows that injuries are most common in the 12-16 age group due to overtraining, which involves training 5-7 hours a day and 6-7 days a week.

METHODS

Research Method: Experimental Method Research Design: Pretest-Posttest Group Design Population: 16 badminton athletes from Feiyue Badminton Club, aged 12-16 years, who train regularly Sample: Saturation sampling technique was used, with a pairing crossover ABBA method. The sample is 16 participants. Research Instrument: Aerobic test using the Balke test or a 15minute run, adjusted to basic fitness components for badminton.

FINDINGS

RESULT CONTINUOUS SLOW RUNING AND CONTINUOUS FAST RUNNING

	Pre-Test (m)	Post-Test(m)	Vo2Max	n-Gain			
	Average						
Continuous Slow Running	244	7.5	40.025	1.54			
Continuous Fast Running	250)7.6	39.425	1.48			

The results of the test for *continuous slow running* and *continuous fast running* groups show improvements in Pre-Test and Post-Test result using the Balke test. The average Vo2Max for the *continuous slow running* group is 40.025, and *continuous fast running* shows it is 39.425. there is also the results of n-Gain average indicate improvement for *continuous slow running* is 1.54 and for *continuous fast running* is 1.48.

FINDINGS

DESCRIPTIVE STATISTIC

	Ν	minimum	maximum	Mean	Std. Doviation
	IN			Wear	Stu. Deviation
Pre-Test slow running groups	8	36.2	40.3	38.48	1.7529
Post-Test slow running groups	8	37.6	42.6	40.02	1.6202
Dro Toot foot running groups	0	26.1	40.2	27.04	1 9252
Pre-rest last rullining groups	0	30.1	40.0	37.94	1.0333
Post-Test Fast running groups	8	37.7	41.3	39.42	1.2372
Valid N (listwise)	8				

Also it can be seen form the average and standart deviation calculation that both groups show an improvment.

FINDINGS

SIMPLE T-TEST

	 -
	C

	Paired Differences							
				95% Confidence Interval of the Difference				
	Mean	Std. S Deviati on	td. Error Mean	Lower	Upper	t	df	Sig. (2- tailed)
Pair 1 Pre-Test and Post-test Group A	1.5375	.7463	.2639	-2.1614	.9136	5.82 7	7	.001
Pair 2 Pre- Test and Post-Test Group B	1.4875	.9906	.3502	-2.3156	.6594	4.24 7	7	.004

Group A has a t-value of 5.827, and Group B has a t-value of 4.247. this shows that both exercises have a significant effect on athletes Vo2Max.

Based on the Pre-test and Post-test data, it can be concluded that there is no significant difference between *continuous slow* and *continuous fast running* in improving badminton athlete's Vo2Max.

ST OF DIFFERENCESS

Levene's for Equa Variance	s Test lity of s	t-test for Equality of Means						
			5	95% Confidence Interval of the Difference				
F	Sig.	t	df	Sig. (2- tailed)	Mean Differen c e	Error Differen c e	Lower	Upper
.680	.423	.832	14	.419	.6000	.7207	9458	2.1458
		.832	13.09 2	.420	.6000	.7207	9559	2.1559

DISCUSSION

- Continuous slow running improved the VO2Max of badminton athletes by 8%. Athletes who did this training had more effective recovery times, could perform techniques and strokes better.
- Continuous fast running increased VO2Max by 3%. It improved recovery • time and allowed athletes to maintain game intensity longer without significant performance drops.
- An independent t-test showed a Significance (2-tailed) value of 0.419, which is greater than 0.05, indicating no significant difference between slow and fast running exercises.
- Both continuous slow running and continuous fast running are effective • strategies for improving VO2Max and endurance in badminton athletes.

CONCLUSION

- There is a significant effect of continuous slow running training on \bullet improving VO2Max in Feiyue Badminton Club athletes.
- There is a significant effect of continuous fast running training on \bullet improving VO2Max in Feiyue Badminton Club athletes.
- There is no significant difference between the effects of continuous slow \bullet running and continuous fast running training on improving VO2Max in **Feiyue Badminton Club athletes.**

REFFERENCES

- Subarjah, H. (2013). Latihan kondisi fisik. *Educacion*, 53(9), 266-276
- Busyairi, B., & Ray, H. R. D. (2018). Perbandingan Metode Interval Training dan Continuous Run Terhadap Peningkatan Vo2Max. Jurnal Terapan Ilmu Keolahragaan, 3(1), 76.
- Wiarto. (2017). Perbedaan Pengaruh antara Metode Latihan Fartlek dan Metode Latihan **Continuous Tempo Running Terhadap Peningkatan Daya Tahan Kardiovaskuler Peserta Latihan** Lari Jarak Jauh. Indonesia Performance Journal 1 (2).
- Arifuddin, E., J 120 151 101 Kesehatan, F. I., & Surakarta, U. M. (2016). Pengaruh Latihan Continuous Running Terhadap Tingkat Kebugaran (Aerobik) Pada Siswa Sepakbola Usia 15-18 Tahun Di Akademi Training Centre Kota Salatiga.
- Harsono. (2016). Latihan Kondisi Fisik (untuk atlet dan keseluruhan). FCI.0012-05-2016.
- Putri, T. K. (2014). Faktor Risiko Cedera Pergelangan Kaki pada Atlet Bulutangkis di Surabaya (Doctoral Disertation, Widya Mandala Catholic University Surabaya).